199 research outputs found

    Modeling with a Conceptual representation: is it necessary? does it Work?

    Get PDF
    In response to recent educational imperatives in the United States, modeling and systems thinking have been identified as being critical for science learning. In this paper, we investigate models in the classroom from two important perspectives: (1) from the teacher perspective to understand how teachers perceive models and use models in the classroom and (2) from the students perspective to understand how student use model-based reasoning to represent their understanding in a classroom setting. Qualitative data collected from 19 teachers who attended a professional development workshop in the northeastern United States indicate that while teachers see the value in teaching to think with models (i.e., during inquiry practices), they tend to use models mostly as communication tools in the classroom. Quantitative data collected about the modeling practices of 42 middle school students who worked collaboratively in small groups (4–5 students) using a computer modeling program indicated that students tended to engage in more mechanistic and function-related thinking with time as they reasoned about a complex system. Furthermore, students had a typified trajectory of first adding and then next paring down ideas in their models. Implications for science education are discussed

    Modeling with a Conceptual representation: is it necessary? does it Work?

    Get PDF
    In response to recent educational imperatives in the United States, modeling and systems thinking have been identified as being critical for science learning. In this paper, we investigate models in the classroom from two important perspectives: (1) from the teacher perspective to understand how teachers perceive models and use models in the classroom and (2) from the students perspective to understand how student use model-based reasoning to represent their understanding in a classroom setting. Qualitative data collected from 19 teachers who attended a professional development workshop in the northeastern United States indicate that while teachers see the value in teaching to think with models (i.e., during inquiry practices), they tend to use models mostly as communication tools in the classroom. Quantitative data collected about the modeling practices of 42 middle school students who worked collaboratively in small groups (4–5 students) using a computer modeling program indicated that students tended to engage in more mechanistic and function-related thinking with time as they reasoned about a complex system. Furthermore, students had a typified trajectory of first adding and then next paring down ideas in their models. Implications for science education are discussed

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    Using action research to improve learning and formative assessment to conduct research

    Get PDF
    The paper reports on how educational research informed and supported both the process of refinement of introductory physics laboratory instruction and student development of scientific abilities. In particular we focus on how the action research approach paradigm combined with instructional approaches such as scaffolding and formative assessment can be used to design the learning environment, investigate student learning, revise curriculum materials, and conduct subsequent assessment. As the result of the above efforts we found improvement in students’ scientific abilities over the course of three years. We suggest that the process used to improve the curriculum under study can be extended to many instructional innovations.National Science Foundatio

    Cottrell Scholars Collaborative New Faculty Workshop: Professional Development for New Chemistry Faculty and Initial Assessment of Its Efficacy

    Get PDF
    The Cottrell Scholars Collaborative New Faculty Workshop (CSC NFW) is a professional development program that was initiated in 2012 to address absences in the preparation of chemistry faculty at research universities as funded researchers and educators (i.e., teacher–scholars). The primary focus of the workshop is an introduction to evidence-based teaching methods; other topics including mentoring, work–life balance, time management, and grant writing are also addressed. A longer-term aim of the workshop is to develop lifelong teacher–scholars by encouraging workshop participants to engage with teaching-focused faculty learning communities through the CSC NFW and at their institutions. The workshop also provides a platform to investigate the adoption of student-centered pedagogies among new faculty, and a study of that process was initiated concurrently. Thus, the aim of the workshop program is to address professional development needs as well as understand the efficacy of that effort

    Online collaboration and cooperation : the recurring importance of evidence, rationale and viability

    Get PDF
    This paper investigates collaboration in teaching and learning and draws out implications for the promotion of collaboration within online environments. It is divided into four sections. First the case for collaboration, including specifically cooperative approaches, is explored. This case revolves around the impact of collaboration on the quality of learning and on learning outcomes. Collaboration is seen as constrained by context but, if structured and rewarded, it will bring important motivational and cognitive benefits. Next, the case for online collaboration is examined. This is based on longstanding arguments about the benefits of working together albeit in an environment which offers greater reach; a mix of media; and archives of interaction. The third section of the paper compares perspectives on online collaboration with a longer tradition of research into collaboration in general; it critiques the idea that online mediation offers a paradigm change in teaching and learning. The fourth section of the paper considers future directions for promoting online collaboration
    • 

    corecore